M . Atapour , S . M . Sheikholeslami and L . Volkmann SIGNED STAR { k } - DOMATIC NUMBER OF A GRAPH
نویسندگان
چکیده
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function f : E(G) −→ {±1,±2, . . . ,±k} is said to be a signed star {k}-dominating function on G if ∑ e∈E(v) f(e) ≥ k for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. The signed star {k}-domination number of a graph G is γ{k}SS(G) = min{ ∑ e∈E f(e) | f is a SS{k}DF on G}. A set {f1, f2, . . . , fd} of distinct signed star {k}-dominating functions on G with the property that ∑d i=1 fi(e) ≤ k for each e ∈ E(G), is called a signed star {k}-dominating family (of functions) on G. The maximum number of functions in a signed star {k}-dominating family on G is the signed star {k}-domatic number of G, denoted by d{k}SS(G). In this paper we study the properties of the signed star {k}domination number γ{k}SS(G) and signed star {k}-domatic number d{k}SS(G). In particular, we determine the signed star {k}domination number of some classes of graphs. Some of our results extend these one given by Xu [7] for the signed star domination number and Atapour et al. [1] for the signed star domatic number.
منابع مشابه
SIGNED STAR (k, k)-DOMATIC NUMBER OF A GRAPH
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function f : E(G) −→ {−1, 1} is said to be a signed star k-dominating function on G if ∑ e∈E(v) f(e) ≥ k for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star k-dominating functions on G with the property that ∑d i=1 fi(e)...
متن کاملSigned star k-domatic number of a graph
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function f : E(G) → {−1, 1} is said to be a signed star k-dominating function on G if ∑ e∈E(v) f(e) ≥ k for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star k-dominating functions on G with the property that ∑d i=1 fi(e) ...
متن کاملSigned total (k, k)-domatic number of a graph
Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ k for each x ∈ V (G), ...
متن کاملSigned (k, k)-domatic number of a graph
Let G be a finite and simple graph with vertex set V (G), and let f: V (G)→ {−1, 1} be a two-valued function. If k > 1 is an integer and ∑ x∈N[v] f(x) > k for each v ∈ V (G), where N [v] is the closed neighborhood of v, then f is a signed k-dominating function on G. A set {f1, f2, . . . , fd} of signed kdominating functions on G with the property that ∑ d i=1 fi(x) 6 k for each x ∈ V (G), is ca...
متن کاملBounds on the Inverse Signed Total Domination Numbers in Graphs
Abstract. Let G = (V,E) be a simple graph. A function f : V → {−1, 1} is called an inverse signed total dominating function if the sum of its function values over any open neighborhood is at most zero. The inverse signed total domination number of G, denoted by γ0 st(G), equals to the maximum weight of an inverse signed total dominating function of G. In this paper, we establish upper bounds on...
متن کامل